单片机

平时我们看到的单片机最小系统中一般都是有时钟电路,见得太多以至于习以为常,突然之间问起来为什么要有晶振呢?一般我们就答晶振就像人的心跳,哈哈,但是到底他是怎么工作的呢,本期我们一探究竟。

1

1

一、晶振旁边的电容是什么用?可不可以不要?

如上图是51单片机晶振的典型应用电路,一般晶振旁边会带两个30pf或者20pf的电容,这个电容叫做负载电容,这个电容不加也是可以使用的。如果电路不加负载电容,则电路会工作在晶体谐振频率上。这里我们假设晶体的谐振频率为Fr,而加了电容的谐振频率为有载谐振频率我们设为FL,则晶体谐振频率Fr与晶体有载谐振频率FL的关系是:FL=Fr + Ts*CL,其中Ts为晶体的牵引量,单位为ppm/pF。CL为晶体的负载电容,即晶体旁边加的那个电容,单位为pF。所以说不加电容也是可以的,只是电路会工作在晶体谐振频率上即FL=Fr;

当晶体发生谐振后,会呈现为纯电阻,即谐振阻抗。在有载谐振中,谐振电阻一般会与负载电容呈反比例关系。也就是说负载电容越小,电路的谐振阻抗越高,就越不容易起振,输出波形幅度就越小。但是电路直接工作在晶体谐振频率的状态是非常理想化的,我们一般的电路都或多或少的有一些杂散电容,当电路振荡时,这些杂散电容便被视为晶体的负载电容进行工作。由于这些杂散电容一般都很小,且不稳定,这就造成晶体振荡频率不稳定,且谐振阻抗增高,不同的人设计的地电路走线不一样,杂散电容也不同。

  既然有杂散电容存在,那么上面的公式实际应该是:FL = Fr + Ts*(Cy+CL),其中Cy为杂散电容,那么根据不同的电容可以调整CL值,直到电路工作在你所要的频率上,比如51单片机的12MHz。一般时候这个负载电容CL值不要太小,上面说过电容太小,谐振阻抗会变高,不利于起振且输出幅度小。所以这个电容值一般选取在10至30pF之间,22或30pf也是一种经验数值,此时由于负载电容CL值远远大于杂散电容Cy值,因此对杂散电容的不稳定性可以忽略不计,那么加了负载电容的电路就会更稳定,频率更准确。

二、晶振的作用

通过上面的介绍我们了解了晶振的典型电路,而平时我们也有看到晶振和电容封装在一起的,也有的单片机不需要接外部晶振而是直接使用内部晶振,总之,无论我们看见看不见,单片机工作是需要晶振的,这是单片机能正常工作的必要条件之一。

1

晶振,一般我们指的是石英晶体振荡器,是一种高精度和高稳定度的振荡器。通过一定的外接电路来,可以生成频率和峰值稳定的正弦波,它是一种无源晶振。而单片机在运行的时候,需要一个脉冲信号,作为自己执行指令的触发信号,可以简单的想象为:单片机收到一个脉冲,就执行一次或多次指令,这也就是所谓的心跳。无论是简单的51单片机,还是手机里的ARM处理器都是需要晶振的,只是晶振的种类和频率不同。我们本期侧重点是51单片机晶振,别的都类似。 

 

1

单片机工作时,是一条一条地从ROM中取指令,然后一步一步地执行。单片机访问一次存储器的时间,称之为一个机器周期,这是一个时间基准。—个机器周期包括12个时钟周期。如果一个单片机外接了一个12MHz的晶振,那么它的时钟周期就是1/12us,它的一个机器周期是12×(1/12)us,也就是1us。

在51单片机的所有指令中,有一些完成比较快的指令,只要一个机器周期就行了,有一些完成得比较慢,得要2个机器周期,还有两条指令要4个机器周期才可以运行完毕。为了衡量指令执行时间的长短,又引入一个新的概念:指令周期。所谓指令周期就是指执行一条指令的时间。

例如,当需要计算DJNZ指令完成所需要的时间时,首先必须要知道晶振的频率,假如我们使用12兆赫兹晶振,那么一个机器周期就是1us,而DJNZ指令是双周期指令,所以执行一次就要2us。如果该指令需要执行500次,那就是1000us,也就是1ms。

机器周期不仅对于指令执行有着重要的意义,而且它也是单片机定时器和计数器的时间基准。比如我们常见的51单片机,通常晶振选择12兆赫兹,那么当定时器的数值加1时,实际经过的时间就是1us,这就是单片机的定时原理。

说白了,晶振就是给单片机提供工作信号脉冲,这个脉冲就是单片机的工作速度,比如12兆晶振,单片机工作速度就是每秒12兆。

来源: 单片机仿真

围观 4

单片机调试出现一些不常见问题及原因

demi的头像

4位共阳数码管的有一个位的其中一段不亮,而其他位的该段能正常显示。这有些不符合常理,因为共阳数码管的4个为的段是连在一起的,如果是程序问题或者硬件连接有问题,应该4位全不亮。原因:经排查,原因是发现电

单片机应用中,常常会遇到这种情况,在用单片机制作电子钟或要求根据时钟启控的控制系统时,会突然发现当初校准了的电子时钟的时间竟然变快或是变慢了。 

于是,尝试用各种方法来调整它的走时精度,但是最终的效果还是不尽人意,只好每过一段时间手动调整一次。那么,是否可使时钟走时更精确些呢?现探讨如下:

误差原因分析

1。单片机电子时钟的计时脉冲基准,是由外部晶振的频率经过12分频后提供的,采用内部的定时,计数器来实现计时功能。所以,外接晶振频率的精确度直接影响电子钟计时的准确性。

2。单片机电子时钟利用内部定时,计数器溢出产生中断(12MHz晶振一般为50ms)再乘以相应的倍率,来实现秒、分、时的转换。大家都知道,从定时,计数器产生中断请求到响应中断,需要3_8个机器周期。定时中断子程序中的数据人栈和重装定时,计数器的初值还需要占用数个机器周期。此外。从中断人口转到中断子程序也要占用一定的机器周期。例如:

从上述程序可以看出,从中断人口到定时/计数器初值的低8位装入需要占用2+2+2=6个机器周期。所以,在编程时一般会把这6个机器周期加入定时/计数器的初值中。但是,从定时,计数器溢出中断请求到执行中断需要几个机器周期(3~8个机器周期)。就很难确定准确值,正是这一原因导致了电子时钟计时的不准。

解决方法

1。 采用高精度晶振方案

虽然采用高精度的晶振可以稍微提高电子钟计时的精确度,但是晶振并不是导致电子钟计时不准的主要因素,而且高精度的晶振价格较高,所以不必采用此方案。
  
2. 动态同步修正方案

从程序人手,采用动态同步修正方法给定时,计数器赋初值。动态同步修正方法如下:由于定时,计数器溢出后,又会从O开始自动加数,故在给定时/计数器再次赋值前,先将定时,计数器低位(TLO)中的值和初始值相加,然后送人定时,计数器中,此时定时,计数器中的值即为动态同步修正后的准确值。具体程序如下:

采用此种方法后,相信制作的电子时钟的精度已有提高了。

3。自动调整方案

采用同步修正方案后,电子时钟的精度虽然提高了很多,但是由于晶振频率的偏差和一些其他未知因素的影响(同一块电路板、同样的程序换了一片单片机后,走时误差不一样,不知是何原因),时间长了仍然会有积累误差。为此,可采用自动调整方案。实际上是一种容错技术。其自动调整原理为:实测出误差Is所需的时间,然后每隔这样一段时间后就对秒进行加“1”或减“1”调整。例如:电子钟每过50小时就慢1秒,其自动调整程序如下:

以下是一个完整实例:


结语

使用此方法调整较费时间,但效果非常好。经实验,一次调整可/以将月误差控制在Is左右,如按此方法再次测出误差Is所需的天数并进行二次调整,其精度会更高。

来源:21ic电子网

围观 8

围观 8